Что объясняет регрессия?
Прежде, чем мы приступим к рассмотрению функций MS Excel, позволяющих, решать данные задачи, хотелось бы вам на пальцах объяснить, что, в сущности, предполагает регрессионный анализ. Так вам проще будет сдавать экзамен, а самое главное, интересней изучать предмет.
Будем надеяться, вы знакомы с понятием функции из математики. Функция – это взаимосвязь двух переменных. При изменении одной переменной что-то происходит с другой. Изменяем X, меняется и Y, соответственно. Функциями описываются различные законы. Зная функцию, мы можем подставлять произвольные значения X и смотреть на то, как при этом изменится Y.
Это имеет большое значение, поскольку регрессия – это попытка объяснить с помощью определённой функции на первый взгляд бессистемные и хаотичные процессы. Так, например, можно выявить взаимосвязь курса доллара и безработицы в России.
Если данную закономерность обнаружить удастся, то по полученной нами в ходе расчетов функции, мы сможем составить прогноз, какой будет уровень безработицы при N-ом курсе доллара по отношению к рублю.
Данная взаимосвязь будет называться корреляцией. Регрессионный анализ предполагает расчет коэффициента корреляции, который объяснит тесноту связи между рассматриваемыми нами переменными (курсом доллара и числом рабочих мест).
Данный коэффициент может быть положительным и отрицательным. Его значения находятся в пределах от -1 до 1. Соответственно, мы может наблюдать высокую отрицательную или положительную корреляцию. Если она положительная, то за увеличением курса доллара последует и появление новых рабочих мест.
Если она отрицательная, значит, за увеличением курса, последует уменьшение рабочих мест.
Регрессия бывает нескольких видов. Она может быть линейной, параболической, степенной, экспоненциальной и т.д.
Выбор модели мы делаем в зависимости от того, какая регрессия будет соответствовать конкретно нашему случаю, какая модель будет максимально близка к нашей корреляции. Рассмотрим это на примере задачи и решим её в MS Excel.
Линейная регрессия в MS Excel
Для решения задач линейной регрессии вам понадобится функционал «Анализ данных». Он может быть не включен у вас поэтому его нужно активировать.
- Жмём на кнопку «Файл»;
- Выбираем пункт «Параметры»;
- Жмём по предпоследней вкладке «Надстройки» с левой стороны;
- Снизу увидим Надпись «Управление» и кнопку «Перейти». Жмём по ней;
- Ставим галочку на «Пакет анализа»;
- Жмём «ок».
Пример задачи
Функция пакетного анализа активирована. Решим следующую задачу. У нас есть выборка данных за несколько лет о числе ЧП на территории предприятия и количестве трудоустроенных работников.
Нам необходимо выявить взаимосвязь между этими двумя переменными. Есть объясняющая переменная X – это число рабочих и объясняемая переменная – Y – это число чрезвычайных происшествий.
Распределим исходные данные в два столбца.
Перейдём во вкладку «данные» и выберем «Анализ данных»
Нажимаем «Ок». Анализ произведён, и в новом листе мы увидим результаты.
Наиболее существенные для нас значения отмечены на рисунке ниже.
Множественный R – это коэффициент детерминации. Он имеет сложную формулу расчета и показывает, насколько можно доверять нашему коэффициенту корреляции. Соответственно, чем больше это значение, тем больше доверия, тем удачнее наша модель в целом.
Y-пересечение и Пересечение X1 – это коэффициенты нашей регрессии. Как уже было сказано, регрессия – это функция, и у неё есть определённые коэффициенты. Таким образом, наша функция будет иметь вид: Y = 0,64*X-2,84.
Что нам это даёт? Это даёт нам возможность составить прогноз. Допустим, мы хотим нанять на предприятие 25 работников и нам нужно примерно представить, каким при этом будет количество чрезвычайных происшествий. Подставляем в нашу функцию данное значение и получаем результат Y = 0,64 * 25 – 2,84. Примерно 13 ЧП у нас будет происходить.
Посмотрим, как это работает. Взгляните на рисунок ниже. В полученную нами функцию подставлены фактические значения по вовлеченным работникам. Посмотрите, как близки значения к реальным игрекам.
Вы так же можете построить поле корреляции, выделив область игреков и иксов, нажав на вкладку «вставку» и выбрав точечную диаграмму.
Точки идут вразброс, но в целом двигаются вверх, как будто посередине лежит прямая линия. И эту линию вы так же можете добавить, перейдя во вкладку «Макет» в MS Excel и выбрав пункт «Линия тренда»
Заключение
Будем надеяться, что данная статья дала вам большее понимание о том, что такое регрессионный анализ и для чего он нужен. Всё это имеет большое прикладное значение.
Источник: https://Reshatel.org/kontrolnye-raboty/ekonometrika-linejnaya-regressiya-v-ms-excel/
Регрессионный анализ в Excel – линейная, множественная, степенная и нелинейная регрессия, построить уравнение, расшифровка результата и примеры
Регрессионный метод – это способ статистического исследования. Для проведения регрессионного анализа часто используют Excel – табличный процессор компании Microsoft, позволяющие быстро систематизировать и просчитывать данные. Программа имеет список определенных инструментов и техник, которые нужно активировать и изучить заранее для проведения подобных расчетов.
Что такое регрессионный анализ?
Исследование данного типа позволяет находить взаимосвязь или зависимость между независимой и постоянной переменной.
Используется, например, для поиска различий между социальными группами (мужчинами и женщинами), температурными показателями.
С точки зрения геометрии целью процесса является построение прямой или графика. Различают следующие типы регрессионного анализа:
- степенной;
- логарифмический;
- параболический;
- показательный;
- линейный;
- гиперболический;
- экспоненциальный.
Каждый из методов имеет собственное назначение и результаты. Дополнительные варианты – однофакторная и многофакторная технологии регрессионного анализа.
Как подключить пакет анализа?
Excel содержит технику регрессионного анализа внутри программы. Но чтобы начать использование, необходимо произвести активацию пакета функций. После этого требуемые инструменты начнут отображаться на общей панели доступа (в верхней части файла). Этапы действий:
- найти кнопку «Файл» — сверху, слева;
- откроется дополнительный список, внизу располагается подпункт «Параметры»;
- появится специальное окно, следует выбрать раздел «Надстройки» – девятая строка сверху;
- переключатель рядом с «Управлением» нужно перевести в положение «Надстройки Excel», потом клавиша «Перейти»;
- всплывет дополнительное окно с доступными возможностями;
- необходимо поставить галочку в квадратике рядом с пунктом «Пакет анализа» и «Ок»;
- после этого окна закроются, а на панели инструментов начнут отображаться новые символы.
Кнопка появится во вкладке «Данные», справа – «Анализ данных». Перезагрузка программы не требуется.
Линейная регрессия
Чтобы подробно объяснить схему работы, в Excel была создана таблица с указанием определенных данных. Цель – попытка обнаружить связь между температурой и числом посетителей торговой точки. Запустить процесс подсчета и регрессии необходимо с помощью кнопки «Анализ данных».
Удаление ненужных пробелов в цифрах в Excel
Откроется диалоговое окошко, из представленного списка выбирают пункт «Регрессия», клавиша «Ок». В полях «Входной интервал Y» и «Входной интервал X» – для первого указывают список ячеек переменного параметра (в примере – покупатели), для второго диапазон по температуре.
Внимание! Пункт «Параметры вывода» осуществляет сохранение результата разными способами – на новом листе, книге и т.д. Удобнее будет переставить значок и получить ответы на той же странице, что и начальная таблица.
Запуска процесса – кнопка «Ок». После необходимо правильно прочитать результат.
Расшифровка результата – анализ данных
Ответы по анализу помещаются в небольшую таблицу «Вывод итогов». Качество показывает R-квадрат – в данном примере 0,70, что является приемлемым. Y-пересечение указывает на уровень переменной, при остальных данных равных «0». Остальные характеристики указывают на взаимосвязь исходников.
Другие виды регрессии
В примере, который представлен выше, используется только две переменных. Такая ситуация является скорее редкостью. Для расчета нескольких или разных показателей используют иные методы регрессии.
Множественная
Техника применяется в случае, когда параметров Х больше одного. Чтобы корректно рассчитать характеристики можно использовать дополнительные инструменты: заданный тренд, коэффициент детерминации, проверка гипотез и иные. Выполнить расчеты может только подготовленный специалист.
Степенная
Для этой модели формула расчета выглядит так: y = a*x˄b. Выбросы для данного метода вычисляются автоматически. Используется, если уровень достоверности техники выше остальных – графа R˄2.
Нелинейная
Для нелинейной методики важно рассчитать коэффициент корреляции. Характеристика указывает на наличие взаимосвязи различных показателей. Как правило, если параметр близок к единице, то взаимодействие есть, а анализ достаточно точный.
Дополнительным элементом является относительная ошибка. Характеристика должна находиться в пределах от 8% до 10% – значит, что расчеты точные и результаты можно использовать дальше.
Как посчитать среднее арифметическое в Excel – все доступные способы
Кроме основных типов регрессионного анализа в Excel используют различные сочетания техник. К примеру, для исследования данных в банковской сфере, колебаний демографических показателей и других. Чтобы корректно пользоваться результатами, важно детально изучить механизм работы подобного исследования. Чаще всего обращаются к специалистам соответствующего профиля.
Источник: http://composs.ru/kak-provesti-regressionnyj-analiz-v-excel/
Построение регрессии в excel. Уравнение регрессии как сделать в excel
Регрессионный анализ в Microsoft Excel – наиболее полное руководств по использованию MS Excel для решения задач регрессионного анализа в области бизнес-аналитики.
Конрад Карлберг доступно объясняет теоретические вопросы, знание которых поможет вам избежать многих ошибок как при самостоятельном проведении регрессионного анализа, так и при оценке результатов анализа, выполненного другими людьми.
Весь материал, от простых корреляций и t-тестов до множественного ковариационного анализа, основан на реальных примерах и сопровождается подробным описанием соответствующих пошаговых процедур.
В книге обсуждаются особенности и противоречия, связанные с функциями Excel для работы с регрессией, рассматриваются последствия использования каждой их опции и каждого аргумента и объясняется, как надежно применять регрессионные методы в самых разных областях, от медицинских исследований до финансового анализа.
Конрад Карлберг. Регрессионный анализ в Microsoft Excel. – М.: Диалектика, 2017. – 400 с.
Скачать заметку в формате или , примеры в формате
Глава 1. Оценка изменчивости данных
В распоряжении статистиков имеется множество показателей вариации (изменчивости). Один из них – сумма квадратов отклонений индивидуальных значений от среднего. В Excel для него используется функция КВАДРОТКЛ().
Но чаще используется дисперсия. Дисперсия — это среднее квадратов отклонений.
Дисперсия нечувствительна к количеству значений в исследуемом наборе данных (в то время как сумма квадратов отклонений растет с числом измерений).
Программа Excel предлагает две функции, возвращающие дисперсию: ДИСП.Г() и ДИСП.В():
- Используйте функцию ДИСП.Г(), если подлежащие обработке значения образуют генеральную совокупность. Т.е., значения, содержащиеся в диапазоне, являются единственными значениями, которые вас интересуют.
- Используйте функцию ДИСП.В(), если подлежащие обработке значения образуют выборку из совокупности большего объема. Предполагается, что имеются дополнительные значения, дисперсию которых вы также можете оценить.
Если такая величина, как среднее значение или коэффициент корреляции, рассчитывается на основе генеральной совокупности, то она называется параметром. Аналогичная величина, рассчитываемая на основе выборки, называется статистикой.
Отсчитывая отклонения от среднего значения
в данном наборе, вы получите сумму квадратов отклонений меньшей величины, чем если бы отсчитывали их от любого другого значения. Аналогичное утверждение справедливо и для дисперсии.
Чем больше объем выборки, тем точнее рассчитанное значение статистики. Но не существует ни одной выборки с объемом меньше объема генеральной совокупности, относительно которой вы могли бы быть уверены в том, что значение статистики совпадает со значением параметра.
Допустим, у вас есть набор из 100 значений роста, среднее которых отличается от среднего по генеральной совокупности, каким бы малым ни было это различие. Рассчитав дисперсию для выборки, вы получите некоторое ее значение, скажем, 4.
Это значение меньше любого другого, которое можно получить, рассчитывая отклонение каждого из 100 значений роста относительно любого значения, отличного от среднего по выборке, в там числе и относительно истинного среднего по генеральной совокупности.
Поэтому вычисленная дисперсия будет отличаться, причем в меньшую сторону, от дисперсии, которую вы получили бы, если бы каким-то образом узнали и использовали не выборочное среднее, а параметр генеральной совокупности.
Средняя сумма квадратов, определенная для выборки, дает нижнюю оценку дисперсии генеральной совокупности. Вычисленную таким способом дисперсию называют смещенной
оценкой. Оказывается, чтобы исключить смещение и получить несмещенную оценку, достаточно разделить сумму квадратов отклонений не на n
, где n
— размер выборки, а на n – 1
.
Величина n – 1
называется количеством (числом) степеней свободы. Существуют разные способы расчета этой величины, хотя все они включают либо вычитание некоторого числа из размера выборки, либо подсчет количества категорий, в которые попадают наблюдения.
Суть различия между функциями ДИСП.Г() и ДИСП.В() состоит в следующем:
- В функции ДИСП.Г() сумма квадратов делится на количество наблюдений и, следовательно, представляет смещенную оценку дисперсии, истинное среднее.
- В функции ДИСП.В() сумма квадратов делится на количество наблюдений минус 1, т.е. на количество степеней свободы, что дает более точную, несмещенную оценку дисперсии генеральной совокупности, из которой была извлечена данная выборка.
Стандартное отклонение (англ. standard deviation
, SD) – есть квадратный корень из дисперсии:
Возведение отклонений в квадрат переводит шкалу измерений в другую метрику, являющуюся квадратом исходной: метры — в квадратные метры, доллары — в квадратные доллары и т.д. Стандартное отклонение — это корень квадратный из дисперсии, и поэтому оно возвращает нас к исходным единицам измерения. Что удобнее.
Часто приходится рассчитывать стандартное отклонение после того, как данных были подвергнуты некоторым манипуляциям.
И хотя в этих случаях результаты несомненно являются стандартными отклонениями, их принято называть стандартными ошибками
.
Существует несколько разновидностей стандартных ошибок, в том числе стандартная ошибка измерения, стандартная ошибка пропорции, стандартная ошибка среднего.
Предположим, вы собрали данные о росте 25 случайно выбранных взрослых мужчин в каждом из 50 штатов. Далее вы вычисляете средний рост взрослых мужчин в каждом штате. Полученные 50 средних значений в свою очередь можно считать наблюдениями.
Исходя из этого, вы могли бы рассчитать их стандартное отклонение, которое и является стандартной ошибкой среднего
. Рис. 1. позволяет сравнить распределение 1250 исходных индивидуальных значений (данные о росте 25 мужчин по каждому из 50 штатов) с распределением средних значений 50 штатов.
Формула для оценки стандартной ошибки среднего (т.е. стандартного отклонения средних значений, а не индивидуальных наблюдений):
где – стандартная ошибка среднего; s
– стандартное отклонение исходных наблюдений; n
– количество наблюдений в выборке.
Рис. 1. Вариация средних значений от штата к штату значительно меньше вариации индивидуальных результатов наблюдений
В статистике существует соглашение относительно использования греческих и латинских букв для обозначения статистических величин. Греческими буквами принято обозначать параметры генеральной совокупности, латинскими — выборочные статистики.
Следовательно, если речь идет о стандартном отклонении генеральной совокупности, мы записываем его как σ; если же рассматривается стандартное отклонение выборки, то используем обозначение s. Что касается символов для обозначения средних, то они согласуются между собой не столь удачно.
Среднее по генеральной совокупности обозначается греческой буквой μ. Однако для представления выборочного среднего традиционно используется символ X̅.
z-оценка
выражает положение наблюдения в распределении в единицах стандартного отклонения. Например, z = 1,5 означает, что наблюдение отстоит от среднего на 1,5 стандартного отклонения в сторону больших значений. Термин z-оценка
Источник: https://nc1.ru/vitamins-and-dietary-supplements/postroenie-regressii-v-excel-uravnenie-regressii-kak-sdelat-v-excel/
Множественная линейная регрессия в MS Excel
В случае построения регрессионной зависимости некоторой случайной величины от совокупности нескольких случайных величин (одна зависимая переменная при нескольких независимых переменных) говорят о построении множественной линейной регрессии вида .
Рассмотрим следующую задачу.
Задача 3. Инвестиционная компания «Аргон-Инвест» рассматривает инвестиционный проект, связанный с покупкой 20%-ного пакета акций АО «N-ский металлургический комбинат». Стоимость пакета CП составляет 70 млн. USD. Менеджерами компании собрана информация об аналогичных сделках.
- Для оценки стоимости пакета акций ими выбраны следующие параметры:
- — стоимость основных фондов предприятия CОФ, млн. USD;
- — объем годового оборота предприятия VО, млн. USD;
- — кредиторская задолжненность предприятия VК, млн. USD;
- — дебиторская задолженность предприятия VД, млн. USD;
— задолженность предприятия по заработной плате VЗП, тыс. USD.
Для решения задачи 3 средствами MS Excel составляем таблицу исходных данных (рис. 10) и вызовем окно Анализ данных (рис. 1), где выбираем раздел Регрессия (рис. 11).
Параметры Входной интервал Y и Входной интервал X представляют собою зависимую и независимые переменные уравнения множественной линейной регрессии.
Результаты расчетов приведены на рис. 12.
- По этим результатам может быть построено следующее уравнение регрессии:
- CP = 0,103CO + 0,541VO – 0,031VK +0,405VD +0,691VZP – 265,844
- или
- y = 0,103×1 + 0,541×2 – 0,031×3 +0,405×4 +0,691×5 – 265,844
- Коэффициент множественной корреляции, коэффициент детерминации, критерий Фишера и критерий Стьюдента позволяют не отвергнуть гипотезу о линейном характере зависимости стоимости пакета акций предприятий от параметров приведенных в таблице.
- Подставив соответствующие данные для N-ского металлургического комбината (таблица 1) в полученное уравнение регрессии получаем искомое значение стоимости пакета акций.
- Таблица 1
СОФ, USD | VО, USD | VК, USD | VД, USD | VЗП, USD | CП, USD |
102,50 | 535,50 | 45,20 | 41,50 | 21,55 | 64,72 |
Таким образом, стоимость пакета акций не должна превышать 64,72 млн. USD. То есть, инвестиционной компании «Аргон-Инвест» нецелесообразно приобретать предлагаемый пакет акций, так как его сумма завышена.
Не нашли то, что искали? Воспользуйтесь поиском:
Источник: https://studopedia.ru/7_134748_mnozhestvennaya-lineynaya-regressiya-v-MS-Excel.html
Эконометрика Решение задачи на множественную регрессии в Excel — PDF Скачать Бесплатно
Подробнее
Подробнее
Подробнее
Подробнее
Подробнее
Подробнее
Подробнее
Подробнее
Подробнее
Подробнее
Статистический анализ динамики налоговых поступлений по налогу на доходы физических лиц за 1990-2012 Плаксин К. С., Беляев А. П., Погиба В. А., Концевая Н. В. Финансовый Университет при Правительстве РФ
Подробнее
ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ
Подробнее
ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Б1.Б.11 Эконометрика Примерные зачетные практические задания Задачи: 1. В лотерее разыгрывается:
Подробнее
Предисловие Данная дисциплина рассматривает и изучает эконометрические модели и методы анализа и прогнозирования социально-экономических процессов. Методика преподавания данной дисциплины предусматривает:
Подробнее
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» (МИИТ)
Подробнее
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. А.Н. ТУПОЛЕВА-КАИ» Лениногорский
Подробнее
В таблице 7 приведены данные по территориям региона за 199Х год. Число k рассчитывается по формуле k = 100 + 10i + j, где i, j две последние цифры зачетной книжки соответственно. (i = 1, j = 6) Требуется:
Подробнее
МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. ПОСТРОЕНИЕ ФУНКЦИИ ПОТРЕБЛЕНИЯ ОТ ДВУХ ФАКТОРОВ Если на потребление влияет не один, а несколько факторов, то взаимосвязь их выражают уравнением множественной регрессии,
Подробнее
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «Экономика и управление на транспорте»
Подробнее
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА НИКОЛАЯ II» Институт экономики и финансов кафедра «Математика»
Подробнее
ПРОГНОЗИРОВАНИЕ УРОЖАЙНОСТИ КАРТОФЕЛЯ В РОССИИ Финансовый университет при Правительстве РФ, магистрант 1 курса Заочного факультета магистерской подготовки Мазилина О.А. Руководитель: Орлова Ирина Владленовна
Подробнее
УДК 330.4:339.3 Музалевская А.А. ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ МОДЕЛИ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЙ ТОРГОВЛИ В статье освещается один из аспектов экономико-математического моделирования деятельности
Подробнее
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ, СТАТИСТИКИ И ИНФОРМАТИКИ Эконометрическое моделирование производительности труда по предприятиям Москвы Econometric modeling productivity for enterprises
Подробнее
АНАЛИЗ ВЛИЯНИЯ ИНВЕСТИЦИЙ И КАЧЕСТВА ПРЕДОСТАВЛЯЕМЫХ УСЛУГ НА КОЛИЧЕСТВО ВНУТРЕННИХ ОТДЫХАЮЩИХ В РФ С ИСПОЛЬЗОВАНИЕМ MICROSOFT EXCEL Блохнова С.А. Российский экономический университет им. Г.В.Плеханова.
Подробнее
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный политехнический университет» ТЕКСТИЛЬНЫЙ ИНСТИТУТ (Текстильный институт
Подробнее
Задача 5. Имеются данные по странам за 005 год. Построить регрессионную модель: Y= 0 + Х + Х +. Задание.. По МНК оценить коэффициенты линейной регрессии i, i= 0,,.. Оценить статистическую значимость найденных
Подробнее
222 Формирование методического подхода (модели) рационального размещения предприятий лесной промышленности 2010 Л.В. Латыпова кандидат экономических наук, доцент Сургутский государственный педагогический
Подробнее
Решение задачи по эконометрике (парная регрессия) Задание ) Постройте поле корреляции результативного и факторного признаков. ) Определите параметры уравнения парной линейной регрессии. Дайте интерпретацию
Подробнее
437 Формирование методического подхода (модели) рационального размещения предприятий лесной промышленности 2009 Л.В. Латыпова кандидат экономических наук, доцент Сургутский государственный педагогический
Подробнее
ПРОГНОЗИРОВАНИЕ ОБЪЕМА ПРОДАЖ ОБУВИ В ТОРГОВОЙ ТОЧКЕ Финансовый университет при Правительстве РФ, бакалавр 3 курса Заочного факультета экономики Арсланова В.Р. Руководитель: Орлова Ирина Владленовна Москва,
Подробнее
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СООБЩЕНИЯ
Подробнее
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «Экономика и управление на транспорте»
Подробнее
Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год: 2015-2016 Текст вопроса 1 Парная регрессия у=а+вх+е представляет собой регрессию
Подробнее
ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ ОБЪЕМА ВВП РОССИИ Эренценова В.А. Финансовый университет при Правительстве РФ Москва, Россия ECONOMETRIC MODELING AND FORECASTING OF RUSSIAN GDP Erentsenova
Подробнее
ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ
Подробнее
Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только
Подробнее
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Институт
Подробнее
ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТОИМОСТИ ЖИЛЬЯ В СВАО ГОРОДА МОСКВЫ Виденин Т.О. Финансовый Университет при Правительстве РФ Москва, Россия ECONOMETRIC MODELING IN REAL ESTATE MARKET OF NORTH- EAST MOSCOW
Подробнее
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «Экономика и управление на транспорте»
Подробнее
УДК 331.108 Н.В. Парушина, Н.А. Сучкова, С.В. Деминова ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ОЦЕНКЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ТРУДОВЫХ РЕСУРСОВ ОРГАНИЗАЦИИ В статье рассмотрены теоретические и практические
Подробнее
ПЗ 9. Множественный линейный регрессионный анализ Модель множественного линейного регрессионного анализа для задачи о влиянии на продолжительность жизни мужчин в 52 странах мира пяти факторов: где случайные
Подробнее
Контрольная работа по дисциплине: «Эконометрика» студента Папченко Антона Алексеевича Задача. Метод наименьших квадратов, уравнения регрессии. Используя метод наименьших квадратов, определить наилучшую
Подробнее
ПРИМЕРНЫЙ ВАРИАНТ ТЕСТОВЫХ ЗАДАНИЙ Вопрос 1. Эконометрика изучает a) Электронные методы измерения в экономике b) Количественные закономерности и взаимосвязи в экономике c) Методы математической статистики
Подробнее
2 . Цели и задачи дисциплины Целью освоения дисциплины «Эконометрика» — дать целостное представление о системе экономико-математических моделей и месте эконометрических моделей, а также совокупности методов,
Подробнее
Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (Финансовый университет) Кафедра «Информационные
Подробнее
КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ УПРАВЛЕНИЯ, ЭКОНОМИКИ И ФИНАНСОВ Кафедра экономико-математического моделирования Р. М. КУНДАКЧЯН, Е.И. КАДОЧНИКОВА ЭКОНОМЕТРИКА Методические рекомендации для
Подробнее
33 Парная корреляция и регрессия Исследуется связь между расходами дилеров некоторой компании на рекламу продукции (, тыс ден ед) и их объемами продаж (Y, млн ден ед) и зависимь объема продаж Y от величины
Подробнее
МОДЕЛИРОВАНИЕ ЗАВИСИМОСТИ ВАЛОВОГО РЕГИОНАЛЬНОГО ПРОДУКТА СУБЪЕКТОВ РОССИЙСКОЙ ФЕДЕРАЦИИ ОТ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ Мишина К. М., Финансовый университет при Правительстве РФ Москва, Россия
Подробнее
Тема 2.3. Построение линейно-регрессионной модели экономического процесса Пусть имеются две измеренные случайные величины (СВ) X и Y. В результате проведения n измерений получено n независимых пар. Перед
Подробнее
Методические указания для выполнения лабораторной работы Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы. Методические указания Регрессией Y на X или условным математическим
Подробнее
УДК 335.26 Мукамбаева Ирина Борисовна, канд. экон. наук, доцент, кафедра финансы и кредит, Международная Академия Управления, Права, Финансов и Бизнеса, г. Бишкек, Кыргызская Республика АНАЛИЗ ФАКТОРОВ,
Подробнее
Министерство образования Российской Федерации Новосибирский государственный технический университет Кафедра прикладной математики Контрольная работа по дисциплине Эконометрика Выполнил: Студент группы
Подробнее
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С. П. КОРОЛЕВА» ЭКОНОМЕТРИКА С А М А Р А 008 ФЕДЕРАЛЬНОЕ
Подробнее
Задание. Имеются следующие данные о выработке литья на одного работающего Х (т), браке литья Х (%) и себестоимости т литья Y (руб.) по 0 литейным цехам различных заводов: i 3 4 5 6 7 8 9 0 x i 44, 6,4
Подробнее
ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» (МИИТ)
Подробнее
Источник: https://docplayer.ru/56820881-Ekonometrika-reshenie-zadachi-na-mnozhestvennuyu-regressii-v-excel.html